$$L^{1}$$ Metric Geometry of Potentials with Prescribed Singularities on Compact Kähler Manifolds

نویسندگان

چکیده

Given $$(X,\omega )$$ compact Kähler manifold and $$\psi \in \mathcal {M}^{+}\subset PSH(X,\omega a model type envelope with non-zero mass, i.e. fixed potential determining singularity such that $$\int _{X}(\omega +dd^{c}\psi )^{n}>0$$ , we prove the -$$ relative finite energy class $$\mathcal {E}^{1}(X,\omega ,\psi becomes complete metric space if endowed distance d which generalizes well-known $$d_{1}$$ on of potentials. Moreover, for {A}\subset {M}^{+}$$ totally ordered, equip set $$X_{\mathcal {A}}:=\bigsqcup _{\psi \overline{\mathcal {A}}}\mathcal natural $$d_{\mathcal {A}}$$ coincides any . We show $$\big (X_{\mathcal {A}},d_{\mathcal {A}}\big is space. As consequence, assuming _{k}\searrow \psi $$ _{k},\psi also (\mathcal _{k}),d\big converges in Gromov-Hausdorff sense to ),d\big there exists direct system $$\Big \langle \big ),P_{k,j}\Big \rangle category spaces whose limit dense into

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ricci flow on compact Kähler manifolds of positive bisectional

where ω̃ = ( √ −1/2)g̃ij̄dz ∧ dz and Σ̃ = ( √ −1/2)R̃ij̄dz ∧ dz are the Kähler form, the Ricci form of the metric g̃ respectively, while c1(M) denotes the first Chern class. Under the normalized initial condition (2), the first author [3] (see also Proposition 1.1 in [4]) showed that the solution g(x, t) = ∑ gij̄(x, t)dz dz to the normalized flow (1) exists for all time. Furthermore by the work of Mok ...

متن کامل

Complex Hessian Equations on Some Compact Kähler Manifolds

On a compact connected 2m-dimensional Kähler manifold with Kähler form ω, given a smooth function f : M → R and an integer 1 < k < m, we want to solve uniquely in ω the equation ω̃ ∧ωm−k eω, relying on the notion of k-positivity for ω̃ ∈ ω the extreme cases are solved: k m by Yau in 1978 , and k 1 trivially . We solve by the continuity method the corresponding complex elliptic kthHessian equation...

متن کامل

Harmonic Maps with Prescribed Singularities into Hadamard Manifolds

Let M a Riemannian manifold of dimension m ≥ 3, let Σ be a closed smooth submanifold of M of co-dimension at least 2, and let H be a Hadamard manifold with pinched sectional curvatures. We prove the existence and uniqueness of harmonic maps φ : M \ Σ → H with prescribed singularities along Σ. When M = R, and H = H C , the complex hyperbolic space, this result has applications to the problem of ...

متن کامل

Realization of Compact Lie Algebras in Kähler Manifolds

The Berezin quantization on a simply connected homogeneous Kähler manifold, which is considered as a phase space for a dynam-ical system, enables a description of the quantal system in a (finite-dimensional) Hilbert space of holomorphic functions corresponding to generalized coherent states. The Lie algebra associated with the manifold symmetry group is given in terms of first-order differentia...

متن کامل

Kähler (& Hyper-kähler) Manifolds

These notes are based on two talks given at the Arithmetic & Algebraic Geometry Seminar of the Korteweg-de Vriesinstituut for mathematics of the Universiteit van Amsterdam. They are intended to give a short introduction to the theory of Kähler manifolds, with a slight focus of applicability to the subject of K3 surfaces. However, they also include other interesting results not related to K3 sur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometric Analysis

سال: 2022

ISSN: ['1559-002X', '1050-6926']

DOI: https://doi.org/10.1007/s12220-021-00779-x